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MULTIPLE MIDCOURSE MANEUVERS IN 
INTERPLANETARY GUIDANCE 

Abolghas sem Ghaff ari 

SUMMARY 

An attempt has been made to investigate the number and location of mid- 
course maneuvers in an interplanetary mission. 

The case of a fly-by Jovian mission with a spin stabilizedspacecraft is con- 
sidered. The mission objectives a r e  a fly-by within 106 km (6 diameters) of the 
planet Jupiter and a flight time from earth to Jupiter of 500 days. 

The spacing-ratio method has been applied and it is shown that a constant 
spacing-ratio of 2.5 for the velocity-sensitivity leads to a near optimum spac- 
ing of correction times. 
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MULTIPLE MIDCOURSE MANEUVERS IN 
INTERPLANETARY GUIDANCE 

INTRODUCTION 

A spacecraft moving in free flight toward some target region in space is 
guided to i ts  final destination by applying one o r  more small velocity impulse 
corrections at certain times along the trajectory to null the predicted target 
e r ror .  The estimate of the target error is achieved by an orbit determination 
process; the required corrections are computed using linear perturbation theory, 
and the impulse is delivered by a rocket motor, which applies an acceleration to 
the spacecraft for a relatively short period of time. The selection of times for 
performing the velocity corrections to the actual trajectory, and the determina- 
tion of what fraction of the predicted target e r ro r s  is to be nulled by each ma- 
neuver is termed by guidance law o r  guidance policy. 

The technique for applying a single-impulse velocity correction to the tra- 
jectory of a spacecraft has been developed at Jet  Propulsion Laboratory and is 
now almost classic. This technique has led to the Mariner I1 fly-by mission to 
the planet Venus and also to the Mariner IV fly-by mission to the planet Mars .  
In this case, a suitable single-maneuver time is chosen from preflight studies 
of orbit determination and execution error  statistics , and the correction capa- 
bility to be carried aboard the spacecraft is determinated by mapping the covar- 
iance matrix of injection guidance errors to the selected maneuver point [l] to 
obtain the covariance matrix of "velocity-to-be-gained" components. 

The consideration and realization of certain flights with more rigid mission 
objectives and higher accuracies such as  Apollo mission, satellite injection 
about planets and soft landing, led us  to believe that a single maneuver is inade- 
quate to accomplish the mission objectives with the required degree of accuracy. 

The accuracy that can be obtained from multiple midcourse corrections is 
a considerable improvement over the single maneuver. On the other hand, the 
situation becomes much more complex when more than one maneuver is con- 
sidered, because the future guidance and tracking policy must be considered for 
the application of a maneuver at any given time. 

The target e r r o r  criterion and the observed accuracy must be defined, a s  
well as the bound on the total velocity correction that can be applied. This 
question has been investigated, as an optimization problem by Battin [21, Break- 
well [3], Striebel and Breakwell [41 , Lawden [5], Pfeiffer [l], and others. 
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In general, there would be a sequence of times at which impulsive correc- 
tions might be made. Assuming that the task of the guidance system is to null 
the predicted target e r ror ,  and that orbit determination data to be taken are 
specified, the sequence of times for performing the corrections is associated 
with the guidance law. The selection of these times is an example of an opti- 
mal stochastic control problem. 

To arrive a t  cri teria for  the selection of these times, several analytical 
methods have been proposed. The main techniques developed are  the three 
following schemes for the determination of the guidance law. 

1. The variance ratio method, suggested by Battin [21, in which a criterion 
for the timing of corrective impulses has been proposed. This criterion 
is based on the ratio of the required velocity correction to the uncer- 
tainty in estimated miss distance, assuming that each maneuver nulls 
out the estimated miss distance e r ror .  This criterion is not directly 
related to a concept of minimum fuel expenditure. 

2. The spacing ratio method, developed by Breakwell [ 3 ] ,  in which one 
seeks the timing of corrective impulses to minimize the average total 
maneuvers under the assumption that: 

a. Each maneuver nulls out the estimated miss distance error .  

b. The e r r o r  in estimating miss distance is due entirely to an e r r o r  
in estimating the instantaneous velocity vector. The optimum 
choice for the spacing of corrections is one which minimizes 
the total velocity correction or,  equivalently, minimizes the total 
required fuel. 

3. The minimum e r ro r  method, proposed by Pfeiffer [ l l  , in which the 
problem is approached from a dynamic programming point of view in 
order to formulate an adaptive policy that seeks to minimize the mean- 
squared target error ,  subject to a propellant constraint. In this 
method the maneuver times ti are designated, and the possibility 
of performing a maneuver at each of these times is allowed. 

The purpose of this paper is to investigate the number and location of the 
correction points on a fly-by Jovian mission. The choice of the spacing-ratio 
method is mainly due to its characteristic features. 

The symbols and nomenclature used in this paper a re  taken from reference 
[SI which are commonly used by the Mission Analysis Office. The nominal tra- 
jectory used for this Galactic Probe is adopted from E71 with the same elements 
and characteristics. 
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STATEMENT AND ANALYSIS OF THE PROBLEM 

Suppose a spacecraft moves in free flight on i ts  way from earth to the planet 
Jupiter, so that its trajectory would pass within lo6 km of the planet Jupiter. The 
spacecraft attitude will be restricted during its motion, and more specifically 
its attitude control law will be assumed that its spin axis 2 (unit vector) iner- 
tially fixed as parallel to the injection velocity 3, Figure 1, (reference 8), that 
is to say: 

where 

In fact, if proper precautions a re  taken to prevent decay of spin rate, spin sta- 
bilization has the most general application of all passive systems. 

I 

-e- 

B = cos -1 (AO . r O )  SPIN AXIS - EARTH ANGLE 

GODDARD SPACE FLIGHT CENTER 
MISSION ANALYSIS OFFICE 

M 1 I  IS66 

Figure 1 -Jupiter Tronsfer Geometry 
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Midcourse maneuvers a re  also restricted to be applied along the spin axis 
2. 

Except in the immediate vicinity of the spheres of influence of the earth and 
the planet Jupiter, the nominal trajectory of the spacecraft is essentially a heli- 
ocentric ellipse. This problem is three-dimensional, but we assume the orbits 
of earth and Jupiter and transfer ellipse are coplanar, and the treatment is two- 
dimensional. 

The actual transfer trajectory is somewhat different from the nominal tra- 
jectory due to injection e r r o r s  and therefore the spacecraft would miss the de- 
sired terminal target by a miss distance B(t ,  - l )  if no corrective action were 
taken. 

It is desired to apply at time tn a corrective velocity impulse AV, at junc- 
tion point C,, Figure 2, to reduce the e r ro r  at the terminal point. 

TERMINAL POINT r 
CORRECTED TRAJECTORY 

CORRECTION POINT 

EARTH GODDARD SPACE FLIGHT CENTER 
MISSION ANALYSIS OFFICE 

MAY I966 

Figure 2-interplanetary Trajectory 
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1 
By applying a linearized e r ro r  theory one finds [3 ]  the expression of the 

computed corrective velocity impulse En as follows : 

. -. 

where B ( t n - l )  denotes an estimate of the miss distance B ( t , , l )  prior to the 
nth impulse and subsequent to the (n - l)th impulse. The partial derivative is to 
be evaluated along the nominal trajectory on which there a re  no impulses. 

It is convenient to use the subscript n and set, in the sequel, 

B(t , )  = B, . 

The miss distance B,-l is not usually correctly estimated, th t is to y, 
a correction at the junction point cn still leaves us with a miss distance B, 
which may be reduced by further corrections. If the estimated Bn-l differs 
from the actual Bn- 

- 
by an amount of E ,  - , then 

If 7 and G: denote the unit vectors along the vectors aE/aV and zn respec- 
tively, then the equation (2) can be written: 

The minimum of En requires the condition 

c o s ( ? ,  Ai; )  = 1 (5) 

i e the velocity-sensitivity vector &/aV and the velocity - correction vector Z’ 
AVn are parallel. They have the same direction if B,-l < 0 
rection if > 0 according as the passage of the spacecraft is at right o r  
left of Jupiter. The computed velocity correction is therefore 

and opposite di- 

1For a detailed and complete analysis of the spacing-ratio method, see ref. [ 3 1  
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I q I =  

Conditions (1) and (5) leads us to conclude the following optimal constant- 
attitude criterion: 

The constant-attitude thrust optimization leads to constant-attitude velocity- 
sensitivity. 

If the magnitude of the actual mechanized velocity correction is 

- 
AV, = AV, t V,!,, 

where V: is the velocity mechanized e r ro r ,  then the expression of the miss 
distance after nth correction becomes 

- 'Bn B, = Bn-l t (AV, t V,!,) - av 

(7) 

Taking into account of the equations (2) and (3), the condition (8) becomes 

'Bn Bn = E tv; -.  
B n - 1  av (9) 

From equations ( 6 ) ,  (7), and (9) we obtain 

av 
Replacing n by n - 1 in equation (9) and using equations (3) and (10) we now 

obtain 

Equation (11) gives us the expression for the nth velocity correction and 
shows its connection to e r ro r s  at and prior to the nth junction point. 
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Now the main concern is, given t, and an RMS launching e r r o r  oB0, choose 
the correction o r  junction points C, , c2,. . .,$, Figure 2, as to achieve the re- 
quired mission objectives with a minimum total velocity correction and hence a 
minimum fuel expenditure for corrective thrusts. In other words, given t, and 
the standard deviation cB , choose a sequence of times { tn; n = 1, 2 ,  . . . , N }  , 
with the integer N not s$ecified such that the sum of the magnitude of the veloc- 
ity corrections 

Z l A V n I  nt 1 

or more workable and closely related expression 

is as small as possible. N denotes the total number of corrective thrusts, and 
I A v  1 is the magnitude of the impulse applied at time tn . The symbol E [ 1 AVn I ]  
indi"ctes the mean value o r  expected value of the random variable I A Vn I. 

If C is a time average of the effective exhaust velocity, the relation between 
the fuel requirement of the total number of thrusts and the total velocity correc- 
tion is given by: 

where h denotes the mass 
condition (14) holds for all 
the velocity of light. 

ratio of the initial propellant mass to the final. The 
mass ratios up to an exhaust velocity of one-tenth 

ANALYTICAL TREATMENT 

The algebraic miss distance B at the target planet Jupiter is a function of 
time, position and velocity which remains constant between impulses. It is con- 
venient to suppose that the miss distance is positive if the spacecraft passes to 
the left of the target planet and negative if the spacecraft passes to the right of 
the target planet. 
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The control-effectiveness o r  the velocity-sensitivity vector ag/av is to be 
evaluated along the nominal trajectory and its magnitude is generally a mono- 
tonic decreasing function of time. 

Before analyzing the sum E&, given by equation (13), let us make two as- 
sumptions about the main e r ro r  distributions. 

The first  assumption is that the distribution of thrust mechanization e r r o r  
is supposed to be normal with zero mean and standard deviation u. 

The second assumption is that the RMS velocity correction uncertainty in 
the direction of az/av is negligible. 

Bearing in mind the above assumptions, the sum S, can be written [ 3 1 as 
follows : 

1 /2  

%I = ($) + 
1 

5 2  ($1 / 2  

t U 

I .  

- 

t(-) 

- 

where 

F =  

1/2 

n=2 

Bo = B ( t o )  is the initial miss distance, which is a random variable, and sup- 
posed to be normally distributed with zero mean and standard deviation D~~ . 

The first term of (15) corresponds to the case n = 1 and the second term 
is valid for n > 1. 

The mis s  distance I B, 1 decreases after each correction and I B, I -. 0 ,  on 
the average, as t, -. T , the arrival time. In other words, to an upper bound on 
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the expected values of the last I B, I corresponds an upper bound on the time to 
target at the last correction, so that 

where tX denotes the earliest time for the final correction. 

Since laG/aV I decreases to zero, the inequality (17) leads us to the following 
inequality 

%- < -  aBx , Bx = B ( t x ) ,  
av - av 

which gives an upper bound on aB,/aV. 

Minimization of SN , or  the optimum spacing of correction times {tn ; n = 1, 
2,  . . .,N} occurs [ 3 ]  when 

and that if 

then t, = 0, while if 

av 

av 

- 

- 

- 
av 

av 
- 

- - _ . . . . -  

aBO 
BO av > p c -  

aBO 

av 
< P 5 -  

BO 

av J 
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then t ,  is obtained by 

c7 
BO - = - .  

av P U  

Condition t, = 0 states that if the launching er ror  is sufficiently large in 
comparison with subsequent errors ,  the first correction to the spacecraft tra- 
jectory should be made in the vicinity of the earth, i.e., several days after launch 
so that one can get adequate early determination of miss distance. 

The criterion for choosing aB,/av, which appears in (19), is [ 3 3: 

Where R denotes the nearest approach to the Jupiter's center, Figure 3, VR is 
velocity of approach relative to the Jupiter, and p is Gauss' constant for Jupiter. 

GODDARD SPACE FLIGHT CENTER 
MISSION ANALYSIS OFFICE 

MAY 1966 

Figure 3-Traiectory Near Jupiter (Hyperbola) 
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The total number of corrective thrusts N is given [ 3 3 by 

N =  

- 
1 + l o g p  1 3 (neares t  i n t e g e r ) ,  i f  aB > p a  - 

0 av 
\ % I  

L 

The minimized F is 

F =  

2 (3) 

Actually the number of midcourse maneuvers in a time-open mission de- 
pends on many factors such as the characteristics of the nominal trajectory and 
objectives of mission, and so on. It can be seen from equation (24) that for a 
given nominal trajectory and an RMS launching e r r o r  aB0 , the total number of 
midcourse maneuver N , though limited, increases with t, . 

NUMERICAL ANALYSIS AND RESULTS 

The nominal trajectory used for  this galactic probe is adopted from [ 7 I 
and has the following elements and characteristics: 

Heliocentric Eccentricity e = 0.8655 

Heliocentric Semi-major axis a = 1.09318 x 189 km 

11 



Heliocentric Semi-minor axis 

Heliocentric Semi-Latus rectum 

Launch date December 30, 1969 

Injection time 7h 5" 37" GMT 

Geocentric injection speed 15.405 km/sec 

Flight time to Jupiter 

k u n  - - Cmsun 

b = 0.54758 x lo9 km 
4 = 0.27429 x 109 km 

500 days 

/IS = 0.132715115 X l o L 2  km3/sec2 

I 

The trajectory near the planet Jupiter (hyperbola) has the following 
characteristics : 

Eccentricity el = 2.479 

Semitransverse 

Radius of closest approach 
to Jupiter 

a = -0.7077 X lo6 km 
1 

R = lo6 km 

Velocity of approach rela- 
tive to the planet Jupiter V, = 20.8 km/sec 

PLj = 0.12671059 X l o9  km3/sec2. 

In order to verify either of the inequalities (20), (21), and solve the equation 
(24), the numerical values of the standard deviations D~ , D ,  as well as the value 
of aB,/aV, for a specified t,, must be determined. 0 

Taking into account of the following numerical data [ 7 1 : 

D 2 2 . 4 ~  lo6 km 
Bo - 

- 2 0.518 x lo5 km/m/sec av - 

D 0 . 5 ~  km/sec, 

one finds that the inequality (20) is satisfied, and therefore the f i rs t  form for N 
in equation (24) should be adopted. 
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In order to get an estimate for the upper bound of t, one may refer to the 
guidance chart for Earth-Jupiter transfer [ 81 in Figure 4, which represents the 
variation of the control-effectiveness 12s /W I along the above mentioned nomi- 
nal trajectory. 

60,000 

50,000 

40,000 

30,000 

20,000 

10,000 

0 

I I I I I 

0 IO 20 30 40 50 

DAYS FROM INJECTION GODDARD SPACE FLIGHT CENTER 
MISSION ANALYSIS OFFICE 

MAY 1966 

Figure 4-Guidance Chart for Earth-Jupiter Transfer 

From Figure 4 it can be seen that the approximate time for the upper bound 
of t, is 62 days from injection, and if we take for 

t, = 50 days  

after injection the optimum spacing ratio is 

p 2 2 . 5  
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On the other hand 

aB(50) = 5500 k r n / m / s e c ,  av 

therefore the optimum integer N , given by the first form of equation (24) is 

N = 3 .  (27) 

The sequence of times { tn) for which the condition (17) is satisfied will be 

t ,  = l o d a y s ,  t, = 35 days ,  t3  = 50 days .  (28) - 
Figure 4 shows that 1 aB( t ) / a V  1 is a monotonic decreasing function of time 

and the sequence 

- = 35000 k m / r n / s e c . ,  - = 14400 k m / m / s e c . ,  -- - 5500 k m / m / s e c .  (29) 
aB2 aB3 

av av av 
is geometric with the approximate ratio 1/2.50. 

A glance at the literature shows that the optimum spacing ratio varies 
practically in the range 

(30) 2 .1  < p 5 3 

so that the value obtained for p is not substantially different from those obtained 
by others. 

The determination of fuel requirement for the total velocity correction as 
well as the magnitude of each velocity correction is of the utmost interest. In 
fact, the fuel expenditure is connected with the minimization of sN or F which 
is given by upper form of equation (25): 

F =  

where 

/2  

t 2.939 Ln 

1/2  (1 t P2) / L n  p = 2.93857 f o r  p = 2 .  50  

14 



As it can be seen from the above condition the first velocity correction A v ,  , 
depends on the first term in Eq. (31), while the remaining corrections depend on 
logarithmic term. A detailed investigation of this problem should follow later. 

CONCLUSIONS 

The application of the spacing-ratio method to the case of a fly-by jovian 

1. The optimum choice for  the spacing of corrections is one which mini- 
mizes the total velocity correction o r ,  equivalently, minimizes the 
total required fuel. 

2. A constant spacing-ratio of p 2 2.5 for the velocity-sensitivity leads 
to a near optimum spacing of correction times. 

3. The total number of corrective thrusts obtained by this method is 
higher, and therefore i t  is advisable to use this method if higher accu- 
racies and more specific mission objectives, such as entry to the . 
atmosphere of a target planet, or  soft landing, a r e  required for the 
terminal trajectory. 

mission leads us to the following conclusions: 
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